Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

A complex containing both five- and six-coordinate [bis(5-bromosalicyli-dene)benzene-1,2-diimine]chloroiron(III)

Ayhan Elmali, ${ }^{\mathrm{a}}+$ Ebru Kavlakoglu, ${ }^{\text {a }}{ }^{*}$ Yalçın Elerman ${ }^{\mathrm{a}} \dagger$ and Ingrid Svoboda ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Engineering Physics, Faculty of Sciences, University of Ankara, 06100 Besevler, Ankara, Turkey, and ${ }^{\mathbf{b}}$ Strukturforschung, Fachbereich Materialwissenschaft, Technische Universität Darmstadt, Petersenstrasse 23, D-64287 Darmstadt, Germany
Correspondence e-mail: kavlak@science.ankara.edu.tr

Received 3 May 2000
Accepted 20 June 2000

The title compound, aquachloro $\left\{4,4^{\prime}\right.$-dibromo-2, 2^{\prime}-[o-phenyl-enebis(nitrilomethylidyne)]diphenolato- $O, N, N^{\prime}, O^{\prime}$ \}iron(III)chloro $\left\{4,4^{\prime}\right.$-dibromo-2, 2^{\prime}-[o-phenylenebis(nitrilomethyli-dyne)]diphenolato- $O, N, N^{\prime}, O^{\prime}$ \}iron(III)-dimethylformamide $(1 / 1 / 1),\left[\mathrm{FeCl}\left(\mathrm{C}_{20} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\right]\left[\mathrm{FeCl}\left(\mathrm{C}_{20} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$. $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$, contains one independent five-coordinate [$\mathrm{FeCl}-$ $\left.\left(\mathrm{C}_{20} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\right]$ monomer, one six-coordinate $\left[\mathrm{FeCl}\left(\mathrm{C}_{20} \mathrm{H}_{12}-\right.\right.$ $\left.\left.\mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ monomer and a non-coordinating dimethylformamide solvent molecule in the asymmetric unit. In the five-coordinate monomer, the Fe atom shows distorted square-pyramidal geometry, with the N and O atoms of the ligand at the base and the Cl atom at the apex of the pyramid. In the six-coordinate monomer, the Fe atom is in a distorted octahedral geometry and coordinated by the donor atoms of the tetrafunctional ligand in the horizontal plane, and the coordination sphere is completed by the O atom of the water molecule and the Cl atom at the axial positions. The title compound contains intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. Apart from these hydrogen bonds, there are also intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts.

Comment

The complexes of transition metal ions with Schiff bases provide a large class of compounds of both stereochemical and magnetochemical interest due to their preparative accessibility, diversity and structural variability (Garnovskii et al.,

[^0]1993). We have previously determined the structures of several dimeric and monomeric Schiff base complexes of iron(III) (Elmali et al., 1992; Elmali et al., 1993, 1993a, 1993b). We report here the results of the reaction of $\mathrm{Fe}^{\mathrm{III}}$ with the tetradentate ligand N, N^{\prime}-bis(5-bromosalicylidene)-1,2-phenylenediamine, forming the title complex, (I).

(I)

There are two independent monomers and a non-coordinating dimethylformamide solvent molecule in the asymmetric unit of (I). In the five-coordinate monomer, atom Fe 1 is coordinated by the N and O atoms of the Schiff base and by a Cl atom in a distorted square-pyramidal geometry. Atom Fe 1 is 0.423 (1) \AA below the best plane defined by it and the Schiff base N and O donor atoms. The angles between the coordination plane and each of the chelate groups in the five-coordinate monomer ($\mathrm{O} 1 / \mathrm{C} 1 / \mathrm{C} 6 / \mathrm{C} 7 / \mathrm{N} 1$ and $\mathrm{O} 2 / \mathrm{C} 20 / \mathrm{C} 15 / \mathrm{C} 14 / \mathrm{N} 2$) are 5.3 (1) and $2.9(1)^{\circ}$, respectively. The angle between the two chelate groups is $8.0(1)^{\circ}$.

In the six-coordinate monomer, on the other hand, atom Fe 2 is in a distorted octahedral geometry. The coordination sphere of atom Fe 2 is completed by a water molecule at a distance $\mathrm{Fe} 2-\mathrm{O} 5$ of 2.142 (2) \AA. Atom Fe 2 is 0.081 (1) \AA above the best plane defined by it and the Schiff base N and O donor atoms. The $\mathrm{O} 3-\mathrm{Fe} 2-\mathrm{N} 4$ and $\mathrm{O} 4-\mathrm{Fe} 2-\mathrm{N} 3$ angles are bent from linearity with values of 165.6 (1) and $167.6(1)^{\circ}$, respectively. The $\mathrm{Fe} 2-\mathrm{O} 3$ and $\mathrm{Fe} 2-\mathrm{O} 4$ bond lengths [1.896 (2) and 1.890 (2) Å, respectively] are clearly shorter than the distance between Fe 2 and the O 5 atom of the water molecule $[2.142$ (2) \AA]. The $\mathrm{O} 5-\mathrm{Fe} 2-\mathrm{Cl} 2$ angle [169.4 (1) ${ }^{\circ}$] indicates that the Fe 2 atom is coordinated by O and Cl atoms at the distorted axial positions. The distance between Fe 2 and the O 5 atom of the water molecule is within the range of other similar six-coordinate monomeric iron(III) complexes reported to date (Cheng \& Scheidt, 1995; Okabe \& Makino, 1998). The $\mathrm{Fe}-\mathrm{N}, \mathrm{Fe}-\mathrm{O}$ and $\mathrm{Fe}-$ Cl bond distances in both of the monomers are almost consistent with those found in other similar iron(III) complexes (Elmali et al., 1993b; Elerman et al., 1997; Gerloch \& Mabbs, 1967).

Neighbouring molecules in the asymmetric unit of (I) are linked via intermolecular hydrogen bonds, with $\mathrm{O} 5-\mathrm{H} \cdots \mathrm{O} 1^{\text {iv }}$ 3.303 (3) \AA and $\mathrm{O} 5-\mathrm{H} \cdots \mathrm{O}^{\mathrm{iv}} 2.732$ (3) \AA [symmetry code: (iv) $1-x, 1-y,-z]$. There are also a number of short $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions (Table 2).

Figure 1
The molecular structure of (I) showing the atom-labelling scheme and with 50% probability displacement ellipsoids. H atoms are drawn as spheres of arbitrary radii.

Experimental

The Schiff base ligand N, N^{\prime}-bis(5-bromo-2-hydroxybenzylidene)-1,3propanediamine was synthesized by reaction of 1,2 -phenylenediamine and 5-bromosalicylaldehyde in a 1:2 molar ratio in methanol solution at room temperature. The Schiff base was obtained as an orange crystal. For the preparation of the title complex, this ligand (1 mmol) was dissolved in hot dimethylformamide, and a solution of iron(II) chloride tetrahydrate (1 mmol) in methanol (20 ml) was added. The solution was allowed to evaporate at room temperature and single crystals of (I) were obtained on cooling.

Crystal data

$\left[\mathrm{FeCl}\left(\mathrm{C}_{20} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\right]-$
$\left[\mathrm{FeCl}\left(\mathrm{C}_{20} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\right.$ -
$\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$
$M_{r}=1218.01$
Triclinic, $P \overline{1}$
$a=11.623$ (2) Å
$b=13.426$ (3) \AA
$c=15.156$ (2) \AA
$\alpha=76.44$ (1) ${ }^{\circ}$
$\beta=71.30(1)^{\circ}$
$\gamma=75.16(2)^{\circ}$
Data collection
Enraf-Nonius CAD-4 diffractometer
$\theta / 2 \theta$ scans
Absorption correction: empirical via ψ scans (North et al., 1968)
$T_{\text {min }}=0.156, T_{\text {max }}=0.794$
9150 measured reflections
7926 independent reflections
7911 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
H -atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.121$
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0126 P)^{2}\right.$
$S=1.014$
7926 reflections
540 parameters

Table 1
Selected geometric parameters $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

$\mathrm{N} 1-\mathrm{Fe} 1$	$2.0918(19)$	$\mathrm{O} 4-\mathrm{Fe} 2$	
$\mathrm{~N} 2-\mathrm{Fe} 1$	$2.0715(19)$	$\mathrm{Cl} 1-\mathrm{Fe} 1$	$1.8904(18)$
$\mathrm{N} 3-\mathrm{Fe} 2$	$2.1215(19)$	$\mathrm{Cl} 2-\mathrm{Fe} 2$	$2.2356(8)$
$\mathrm{N} 4-\mathrm{Fe} 2$	$2.0974(17)$	$\mathrm{Fe} 2-\mathrm{O} 5$	$2.3926(8)$
$\mathrm{O} 1-\mathrm{Fe} 1$	$1.8775(18)$	$\mathrm{O} 5-\mathrm{HO} 51$	$2.142(2)$
$\mathrm{O} 2-\mathrm{Fe} 1$	$1.8834(17)$	$\mathrm{O} 5-\mathrm{HO} 52$	$0.943(2)$
$\mathrm{O} 3-\mathrm{Fe} 2$	$1.8956(17)$		$0.7897(17)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{Fe} 1$	$124.31(16)$	$\mathrm{N} 2-\mathrm{Fe} 1-\mathrm{Cl} 1$	$98.75(5)$
$\mathrm{C} 8-\mathrm{N} 1-\mathrm{Fe} 1$	$113.53(14)$	$\mathrm{N} 1-\mathrm{Fe} 1-\mathrm{Cl} 1$	$103.58(6)$
$\mathrm{C} 14-\mathrm{N} 2-\mathrm{Fe} 1$	$124.46(15)$	$\mathrm{O} 4-\mathrm{Fe} 2-\mathrm{O} 3$	$102.19(7)$
$\mathrm{C} 13-\mathrm{N} 2-\mathrm{Fe} 1$	$114.22(14)$	$\mathrm{O} 4-\mathrm{Fe} 2-\mathrm{N} 4$	$90.25(7)$
$\mathrm{C} 27-\mathrm{N} 3-\mathrm{Fe} 2$	$124.09(15)$	$\mathrm{O} 3-\mathrm{Fe} 2-\mathrm{N} 4$	$165.61(7)$
$\mathrm{C} 28-\mathrm{N} 3-\mathrm{Fe} 2$	$114.14(14)$	$\mathrm{O} 4-\mathrm{Fe} 2-\mathrm{N} 3$	$167.63(8)$
$\mathrm{C} 34-\mathrm{N} 4-\mathrm{Fe} 2$	$123.88(15)$	$\mathrm{O} 3-\mathrm{Fe} 2-\mathrm{N} 3$	$88.70(7)$
$\mathrm{C} 33-\mathrm{N} 4-\mathrm{Fe} 2$	$114.56(13)$	$\mathrm{N} 4-\mathrm{Fe} 2-\mathrm{N} 3$	$78.25(7)$
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Fe} 1$	$132.97(16)$	$\mathrm{O} 4-\mathrm{Fe} 2-\mathrm{O} 5$	$89.77(9)$
$\mathrm{C} 20-\mathrm{O} 2-\mathrm{Fe} 1$	$130.20(14)$	$\mathrm{O} 3-\mathrm{Fe} 2-\mathrm{O} 5$	$89.61(8)$
$\mathrm{C} 21-\mathrm{O} 3-\mathrm{Fe} 2$	$133.71(14)$	$\mathrm{N} 4-\mathrm{Fe} 2-\mathrm{O} 5$	$83.17(7)$
$\mathrm{C} 40-\mathrm{O} 4-\mathrm{Fe} 2$	$131.79(15)$	$\mathrm{N} 3-\mathrm{Fe} 2-\mathrm{O} 5$	$84.39(8)$
$\mathrm{O} 1-\mathrm{Fe} 1-\mathrm{O} 2$	$90.84(8)$	$\mathrm{O} 4-\mathrm{Fe} 2-\mathrm{Cl} 2$	$95.34(7)$
$\mathrm{O} 1-\mathrm{Fe} 1-\mathrm{N} 2$	$148.96(8)$	$\mathrm{O} 3-\mathrm{Fe} 2-\mathrm{Cl} 2$	$98.30(6)$
$\mathrm{O} 2-\mathrm{Fe} 1-\mathrm{N} 2$	$87.64(8)$	$\mathrm{N} 4-\mathrm{Fe} 2-\mathrm{Cl} 2$	$87.56(5)$
$\mathrm{O} 1-\mathrm{Fe} 1-\mathrm{N} 1$	$87.32(8)$	$\mathrm{N} 3-\mathrm{Fe} 2-\mathrm{Cl} 2$	$88.78(6)$
$\mathrm{O} 2-\mathrm{Fe} 1-\mathrm{N} 1$	$147.03(8)$	$\mathrm{O} 5-\mathrm{Fe} 2-\mathrm{Cl} 2$	$169.44(6)$
$\mathrm{N} 2-\mathrm{Fe} 1-\mathrm{N} 1$	$77.55(7)$	$\mathrm{Fe} 2-\mathrm{O} 5-\mathrm{HO} 51$	$112.99(14)$
$\mathrm{O} 1-\mathrm{Fe} 1-\mathrm{Cl} 1$	$111.18(7)$	$\mathrm{Fe} 2-\mathrm{O} 5-\mathrm{HO} 52$	$118.32(19)$
$\mathrm{O} 2-\mathrm{Fe} 1-\mathrm{Cl} 1$	$107.73(6)$	$\mathrm{HO} 51-\mathrm{O} 5-\mathrm{HO} 52$	$105.8(2)$

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 9-\mathrm{H} 9 \cdots \mathrm{Cl}^{\mathrm{i}}$	0.93	2.75	$3.654(2)$	165
$\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{Cl}^{2 i}$	0.93	2.74	$3.643(3)$	163
$\mathrm{C} 14-\mathrm{H} 14 \cdots \mathrm{Cl}^{\mathrm{ii}}$	0.93	2.63	$3.537(3)$	165
$\mathrm{C} 16-\mathrm{H} 16 \cdots \mathrm{Cl}^{2 i}$	0.93	2.94	$3.777(4)$	150
$\mathrm{C} 32-\mathrm{H} 32 \cdots \mathrm{Cl}^{2 i \mathrm{iij}}$	0.93	2.74	$3.648(2)$	167
$\mathrm{C} 34-\mathrm{H} 34 \cdots \mathrm{Cl}^{\text {iii }}$	0.93	2.86	$3.731(3)$	156
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{O}^{\mathrm{i}}$	0.93	2.44	$3.332(4)$	161
$\mathrm{C} 14-\mathrm{H} 14 \cdots \mathrm{O}^{\mathrm{ii}}$	0.93	2.92	$3.364(3)$	111
$\mathrm{C} 41-\mathrm{H} 41 \cdots \mathrm{O} 5$	0.93	2.75	$3.062(10)$	101

Symmetry codes: (i) $1-x, 2-y,-z$; (ii) $1+x, y, z$; (iii) $-x, 1-y, 1-z$; (iv) $1-x, 1-y,-z$.

H atoms bonded to C atoms were refined using a riding model with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and H -atom displacement parameters were restricted to be $1.2 U_{\text {eq }}$ of the parent atom. Since the dimethylformamide solvent is highly mobile, the C and N atoms of the solvent were refined isotropically and the H atoms of the solvent methyl groups were not determined. In the difference Fourier map, it was found that one of the residual densities larger than $1 \mathrm{e} \AA^{-3}$ was close to Br 3 , at a distance of 0.07 A .

Data collection: CAD-4 Diffractometer Control Software (EnrafNonius, 1993); cell refinement: CAD-4 Diffractometer Control Software; data reduction: REDU4 (Stoe \& Cie, 1991); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

PLUTON92 (Spek, 1992); software used to prepare material for publication: SHELXL97.

This work was supported by Research Funds of the University of Ankara under grant number 98-25-00-03.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GS1097). Services for accessing these data are described at the back of the journal.

References

Cheng, B. \& Scheidt, W. R. (1995). Acta Cryst. C51, 1271-1275.
Elerman, Y., Kabak, M. \& Ülkü, D. (1997). Acta Cryst. C53, 712-714.
Elmali, A., Atakol, O., Svoboda, I. \& Fuess, H. (1992). Z. Kristallogr. 202, 323325.

Elmali, A., Atakol, O., Svoboda, I. \& Fuess, H. (1993). Z. Kristallogr. 203, 271274, 275-278.
Elmali, A., Elerman, Y., Svoboda, I. \& Fuess, H. (1993a). Acta Cryst. C49, 965967.

Elmali, A., Elerman, Y., Svoboda, I. \& Fuess, H. (1993b). Acta Cryst. C49, 1365-1367.
Enraf-Nonius (1993). CAD-4 Diffractometer Control Software. Release 5.1. Enraf-Nonius, Delft, The Netherlands.
Garnovskii, A. D., Nivorozkhin, A. L. \& Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1-69.
Gerloch, M. \& Mabbs, F. E. (1967). J. Chem. Soc. A, pp. 1598-1608, 1900-1908.
North, A. C. T., Philips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Okabe, N. \& Makino, T. (1998). Acta Cryst. C54, 1279-1280.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Spek, A. L. (1992). PLUTON92. University of Utrecht, The Netherlands. Stoe \& Cie (1991). REDU4. Version 7.08. Stoe \& Cie, Darmstadt, Germany.

[^0]: \dagger Alexander von Humboldt fellow.

